Draft Statewide River, Miss. Pool & Pepin Eutrophication Criteria

as presented to

Mississippi River Forum

Steve Heiskary

With assistance from:

Will Bouchard, Dennis Wasley, Howard Markus & Norman Senjem

Minnesota Pollution Control Agency

October 2010

Outline

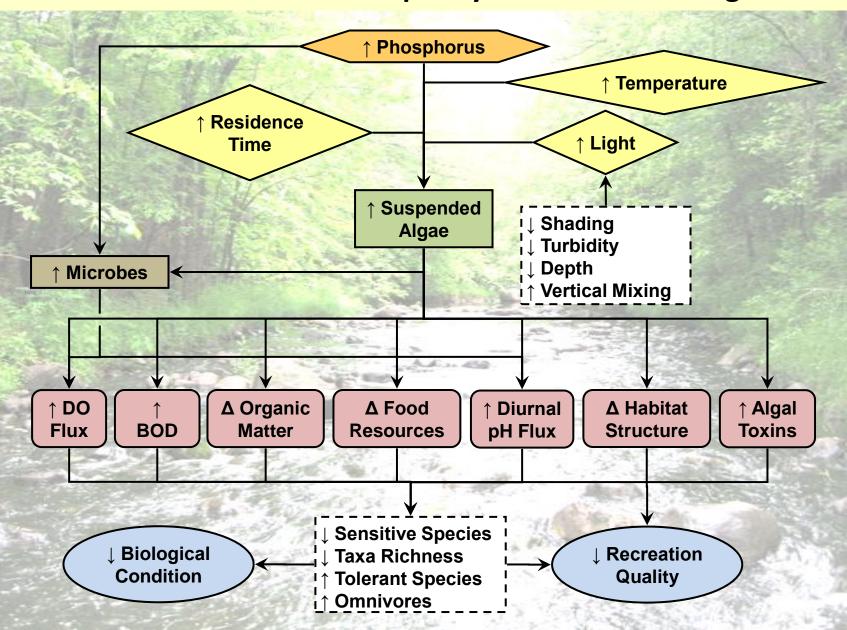
- Statewide River Eutrophication Criteria
- Linkage with Lake Pepin & Mississippi River navigational pool eutrophication criteria;
- Challenges in Applying the Criteria
- Summary & Timelines

Need for River Nutrient Standards

- Nutrient enrichment negatively impacts aquatic biota and recreation
- USEPA States should develop nutrient criteria for lakes, streams, wetlands (<u>must</u> <u>develop</u> may be more accurate based on recent Florida & Wisconsin cases)
- MN promulgated ecoregion-based lake eutrophication standards in 2008
- MN will promulgate river eutrophication standards in the 2010-2012 rulemaking

Statewide river criteria development

- Document relationships among nutrients, suspended algae, BOD, diurnal DO flux (daily max DO-min DO), fish, & inverts;
- Identify threshold concentrations;
- Assign numeric criteria based on above & supporting information;
- Numeric translator to address excess attached algae (periphyton);
- Adopt criteria into Minnesota's water quality (Ch. 7050) standards


Draft river eutrophication criteria (summer-means)

	Nutrient	Response		
Region	TP μg/L	Chl-a µg/L	DO flux mg/L	BOD ₅ mg/L
North	55	<10	≤4.0	≤1.5
Central	100	<20	≤4.5	≤2.0
South	150	<40	≤5.0	<3.5

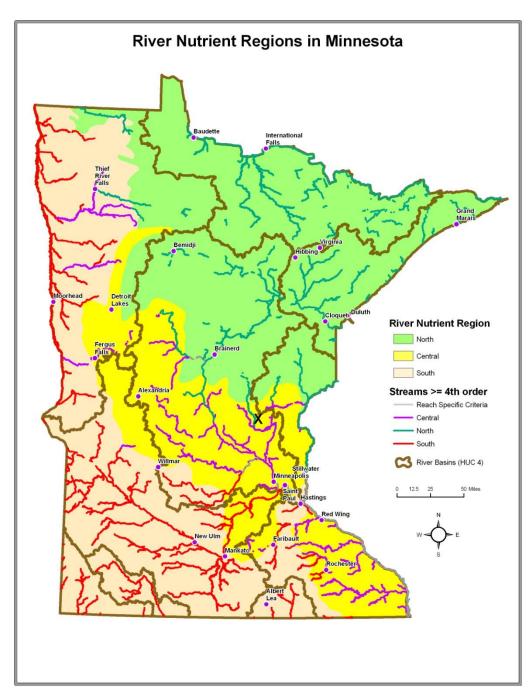
<u>Ecoregion-based</u> eutrophication criteria for nutrient (TP) and response variables: sestonic chlorophyll-a, daily dissolved oxygen flux (change) & biochemical oxygen demand; pH >9.0 (WQS) can be used as a response variable as well;

Conceptual model on impact of nutrient enrichment on biological condition and recreational quality for medium to large rivers

River Nutrient Study studies & data collection

- •1999 & 2000 Initial EPA-funded studies focused on representative medium-large rivers in various ecoregions e.g. Crow, Miss. & Rum (below) focus on non-wadeable, watershed area generally>1,000 mi²
- •2001 Sampled a range of rivers to test relationships & expand spatial coverage
- •2006 & 2008 expanded coverage to all ecoregions
- •River nutrient dataset ~40 sites w/ nutrients, biology & diurnal measurement.
- •Later incorporated data from 100's of biological monitoring sites for state-wide coverage both wadeable & non-wadeable;

South Fork North Fork Miss. at Monticello Run



Probe for continuous DO measurement

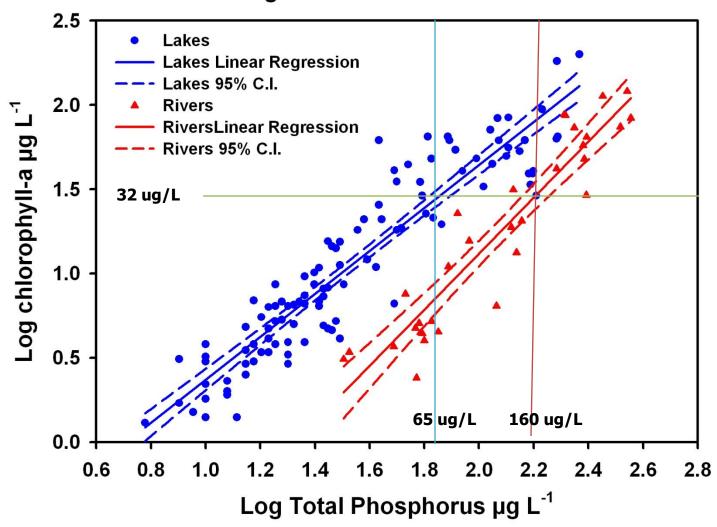
River Nutrient Regions (RNR)

Needed to regionalize criteria development because:

- 1) distinct differences among landform, land use, soil type, & stream water quality in MN &
- 2) EPA recommendation;
- 3) Consistent with lake standards

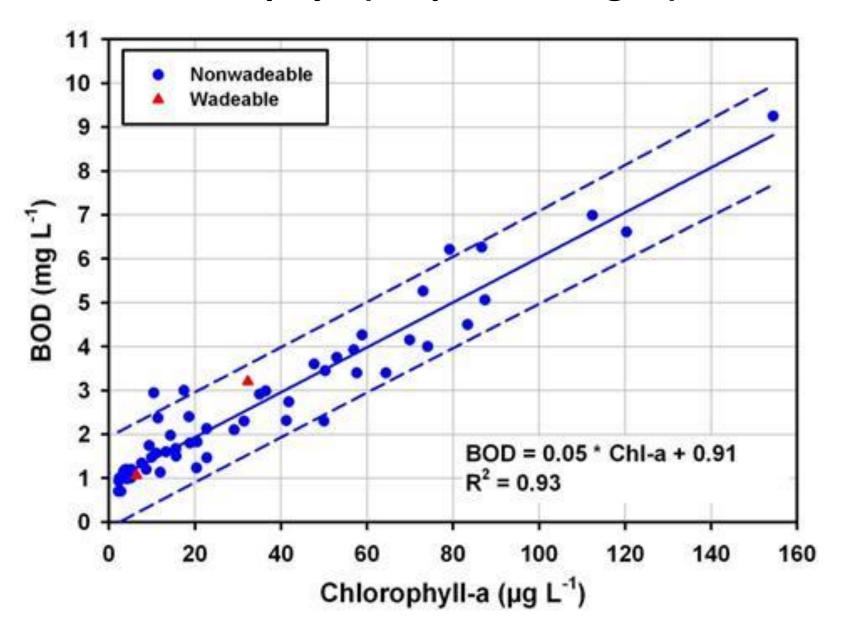
EPA Ecoregion map is the base map; Rivers classified based on:

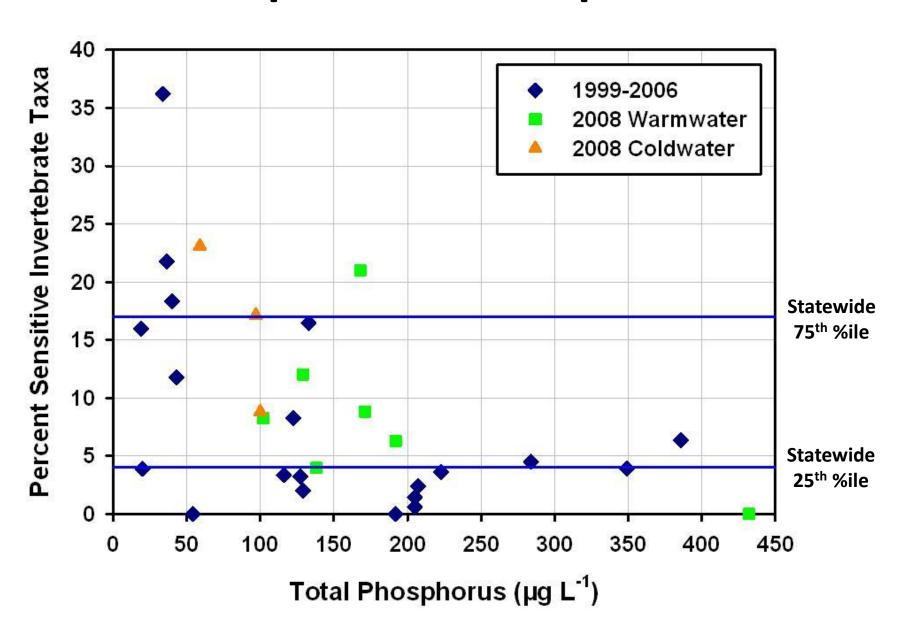
- Relative ecoregion composition;
- Review of reach-specific WQ;

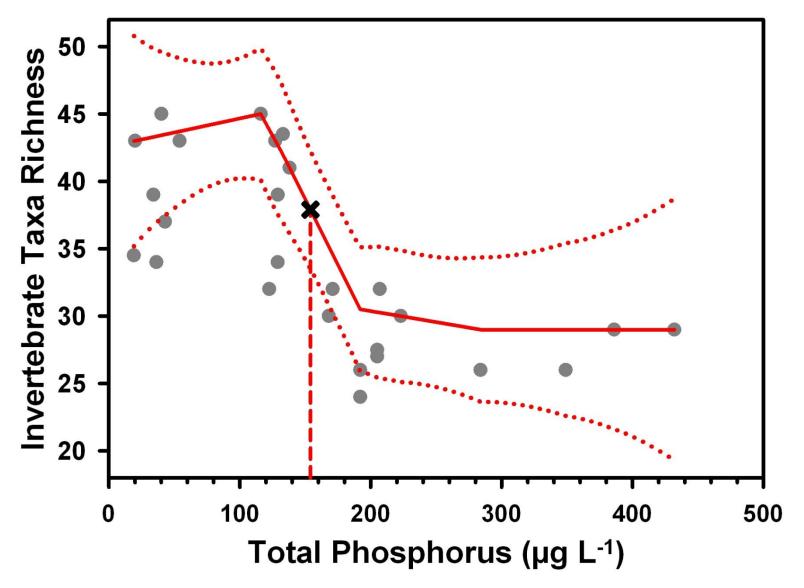


Criteria development: multiple lines of evidence

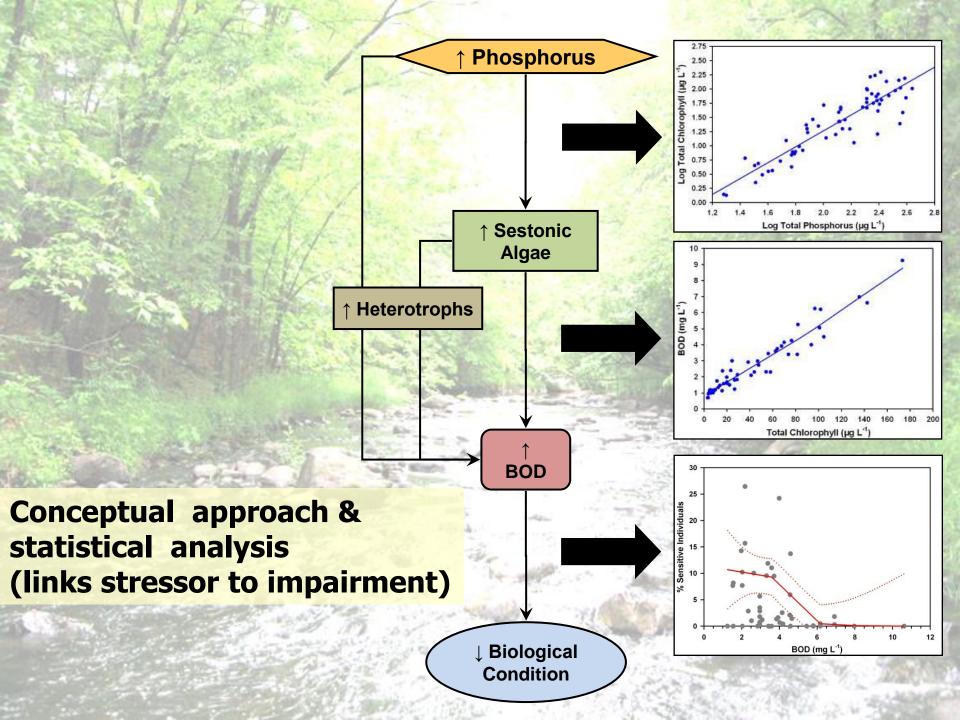
- Spearman correlation: initial examination of relationships among TP, TN, Chl-T, DO flux, and biological metrics
- Linear regression: define relationships among TP, N
 Chl-T, and DO flux
- 3. <u>Scatterplots:</u> visualize relationships among biological metrics and stressors and begin threshold ID
- Quantile regression and changepoint analysis: threshold concentrations determined for wadeable vs. nonwadeable and on a region-specific basis
- <u>Comprehensive literature review</u> to provide further perspectives
- Use above to move from broad ranges to regionspecific criteria


TP vs.chl-a regressions for reference lakes & rivers


Established relationship among TP & Chl-a based on RN data for 31 rivers.

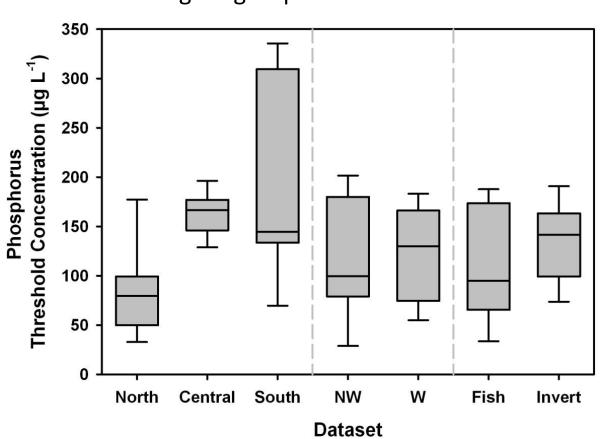

- Different relationship but equally as strong as lakes.
- •Stream size, flow & turbidity influence relationships.

River chlorophyll (suspended algae) and BOD



Phosphorus and Aquatic Life

Quantile (piece-wise) regression (with CI) describes relationships & ID threshold concentrations. Mid-point of 2 breakpoints used to interpolate TP.



Threshold Concentrations

Threshold concentrations from biological tests for:

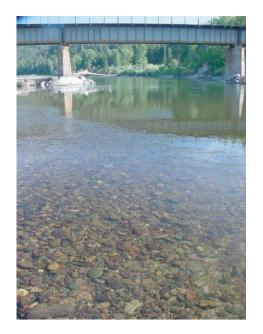
- Region: north, central, and south
- River size: nonwadeable and wadeable
- Biological group: Fish and invertebrate

Draft river eutrophication criteria (summer-means).

	Cause	Response		
Region	TP μg/L	Chl-a µg/L	DO flux mg/L	BOD ₅ mg/L
North	55	<10	≤4.0	≤1.5
Central	100	<20	≤4.5	≤2.0
South	150	<40	≤5.0	<3.5

- •<u>Future assessments</u> based on:
- Minimum of 2 summers & 6 or more obs./summer;
- Data from most recent 10 years;
- Must exceed cause & one or more response (stressors)to be deemed impaired (303(d) listed)

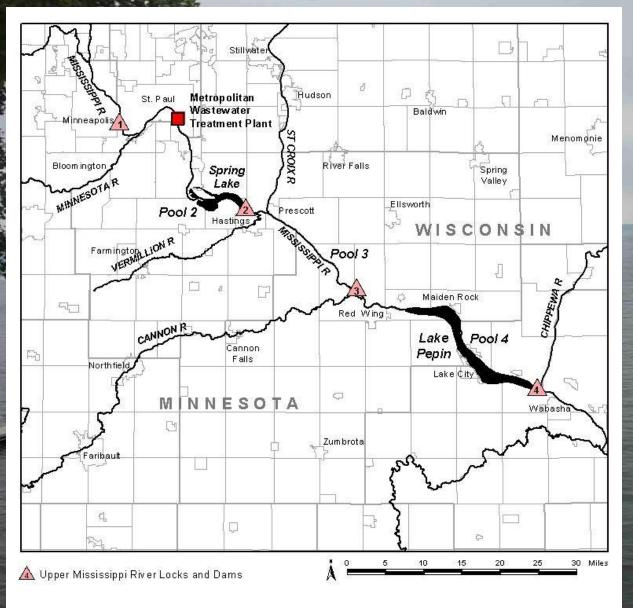
Reflects distinct regional patterns
Based on summer-mean STORET data from 1995-2009 for:
128 (North), 239 (Central) and 209 (South) river sites.


Example assessment based on STORET data for most recent 10 years

	TP	Chl-a	BOD	303(d)
Region / River Name	ug/L	ug/L	mg/L	list
North RNR	55	10	1.5	
Leech Lake River nr Ball Club	28		1.5	Ν
Pine River nr Mission, CSAH11	28		1.0	Ν
St. Croix River nr Danbury, WI	39	3	1.0	Ν
Mississippi River at Aitkin, MN	52	6	1.2	N
Central RNR	100	20	2.0	
Leaf River nr Staples, CSAH29	84	3	1.2	N
Sauk River nr St. Cloud, MN	172	25	2.6	Υ
North Fork Crow River nr Rockford	253	56	3.5	Υ
Cannon River at Welch, MN	190	16	2.6	Υ
Mississippi River at Anoka	88	23	1.8	close
Rum River at St. Francis	125	19	1.9	close
South RNR	150	40	3.5	
South Fork Crow River at Delano	395	102	7.9	Υ
Blue Earth River nr Rapidan	190	59		Υ
Le Sueur River nr Rapidan	244	45		Υ
Minnesota River at Judson	239	82		Υ

Addressing excess <u>attached</u> algae: Periphyton Chl-a <150 mg/m² (mass/unit area)

- Current scientific literature suggests a biomass concentration of 150 mg CHL a/m^2 protects streams' beneficial uses and higher biomass is considered polluted with loss of uses.
- This is a numeric translator of the general narrative WQS language that does not allow "noxious growth of algae."
- Because it is a translator, there are no nutrient concentrations associated with this biomass WQS (requires stressor ID to determine causation).



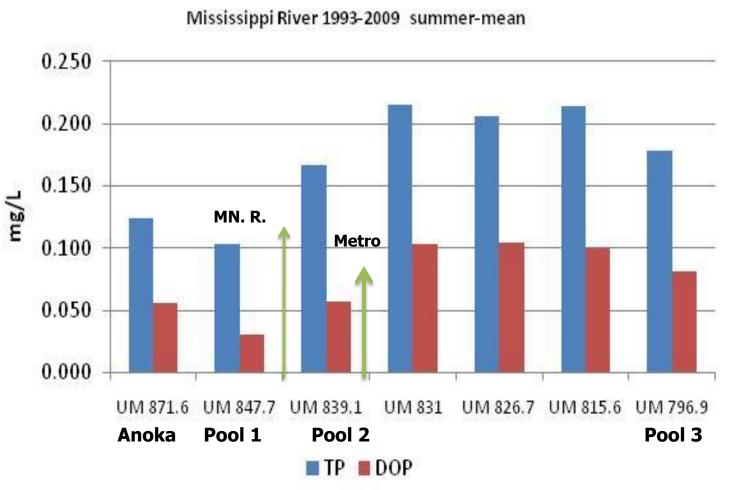
~150 mg/m2

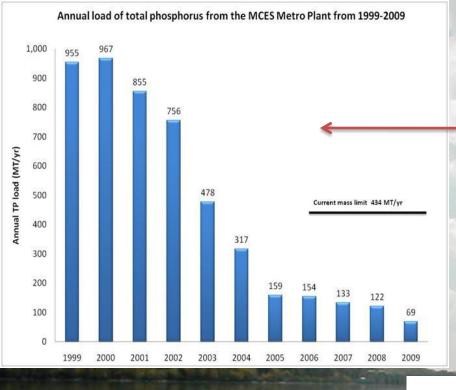
>150 mg/m2

Low

Linking statewide river criteria with Lake Pepin & Miss. River navigational pool criteria

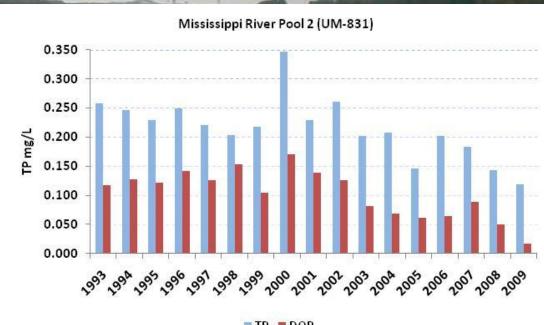
Rivers - "Aquatic life" emphasis


Pools and Pepin - "Aquatic Recreation" emphasis



MCES data for rivers & Pools 1-3: Summer-mean Phosphorus 1993-2009

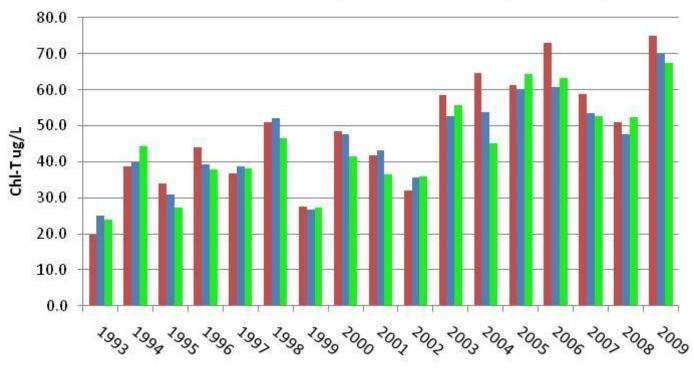
Example of a major reduction in P loading


MCES Metro Plant P loading: 1999-2009

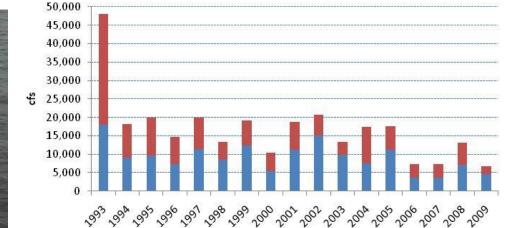
• Effluent reduced from ~3 mg/L to <0.5 mg/L by 2005;

Pools 2 & 3 TP:1993-2009

- Recent TP in Pools 2 & 3 <150 ug/L
- Evidence of periodic P limitation



Summer-mean Chlorophyll: Anoka to Pool 3



■839.1 ■831 ■815.6

Minimal change in Chlorophyll across Pool 2;
 Increase over time function of decreased flow over period;
 [70% variation in MN R. Chl function of flow]

🔳 Anoka 🏾 🔳 Jordan

Summer-mean flow Miss. & Minn. Rivers

Lake Pepin Draft Eutrophication Criteria

Criteria & Considerations: TP = 100 ug/L

- •Lower end of TP range for 1900-1960 time period;
- Supported by model based on 22-years of data
- Consistent with Wistandard;
- Consistent with MN statewide river standards;

Criteria & Considerations: Chl-a = 28 ug/L

- Keep frequency of nuisance blooms (>50 ppb) to < 5% summer;
- Minimize dominance of blue-greens;

Modeled reductions needed to meet Pepin criteria:

- •50% reduction in Minn. & Cannon River TP & Chl-a;
- •20% reduction in Miss. & St. Croix Rivers TP & Chl-a;
- Reductions needed from point & nonpoint sources, good progress to date at MCES Metro facility;

Draft criteria for main-stem rivers, Miss. River pools, & Lake Pepin. Concentrations expressed as summer averages.

River/Pool	Site (RM)	Data source	TP μg/L	Chl-a µg/L
Miss. @Anoka ¹	UM-872	MCES	100	20
Pool 1 ²	UM-847	MCES	100	35
Lake St. Croix ³		MCES	40	14
Minn. @Jordan ¹	MI-39	MCES	150	40
Pools 2-3 ⁴	UM-815	MCES	3050- 303	35
Pepin ⁵	4 sites	LTRMP	100	28
Pools 5-8 ⁶	Near-dam	LTRMP	-	35

¹ Statewide river eutrophication criteria-based.

² Minimize frequency of severe blooms; Upstream criteria protect Pool 1.

³ MN lake criteria-based.

⁴ Minimize frequency of blooms & support Pepin requirements

^{5.} Lake Pepin criteria based on mean from 4 sites.

 $^{^6}$ Minimize frequency of severe blooms; upstream P requirements benefit lower pools. WI standard of 100 μ g/L TP may apply to Pools 5-8 & inflowing rivers;

Challenges in Applying Criteria

- Miss. River pool criteria are "system goals" – not always cause-effect between TP and chl-a values at given site.
- Need to find upstream algae "hot spots"
 & focus TP reductions there:
 - Minn. River, N&S Fork Crow, Sauk, ...
- This will be done over time through TMDLs & watershed approach

Challenges 2

- Criteria designed to protect aquatic life and recreation of entire Mississippi River in Minnesota;
- Steep TP reductions needed upstream of Metro Area to benefit entire system.
- Need to emphasize <u>targeted reductions</u> for <u>system-wide benefits</u>

Summary

- Initial draft river criteria revised based on EPA review and comment; re-submitted to EPA August 2010.
- Pepin site specific and pool criteria technical reports also submitted to EPA;
- Linkages among these rivers, pools & Pepin are made & draft criteria reflect interconnectedness and need to protect downstream resources;
- Pepin criteria need be considered in a Miss. R. context & overall approach emphasizes upstream reductions in order to meet criteria and assure uses are met (i.e. not stand-alone goals to be pursued in isolation);

What's Ahead & Underway

- EPA R5 & HQ review underway;
- Public presentations planned for Nov.;
- Proposed nitrogen criteria based on nitrate-N toxicity, EPA bioassays recently completed
 - Current WQS for 2A & 2Bd 10 mg/L
 - Proposed aquatic life criteria ~5 mg/L
- Complete development of "Statement of Need & Reasonableness (SONAR)" and triennial review process during 2011;
- Finalize by 2012

River Nutrient Reports & Water Quality Rules

MORE INFORMATION:

Water Quality Standards Rule Revision

http://www.pca.state.mn.us/water/standards/rulechange.html

Streams: Algae Monitoring (1 journal article & 2 reports to EPA)

http://www.pca.state.mn.us/water/biomonitoring/bio-streams-

<u>algae.html</u>

QUESTIONS/COMMENTS:

steven.heiskary@state.mn.us

651-757-2419

Minnesota Pollution Control Agency